
Инструкция по установке экземпляра
ПО «Автоматизированная банковская система

"АРНУВО"»

Оглавление

1. Требования к системе ... 3

2. Основные компоненты ..3

3. Ход установки ... 4
3.1. Установка Kubernetes-кластера ...4
3.2. Установка инфраструктурных компонентов кластера ... 5
3.3. Установка прикладного стэка ... 7

1. Требования к системе
В данной инструкции рассматривается один из вариантов развёртывания программы для

ЭВМ «Автоматизированная банковская система "АРНУВО"» (далее также - АРНУВО, АБС
«АРНУВО», микросервисная автоматизированная банковская система, микросервисная АБС
«АРНУВО», АБС, система, ПО) на контейнерной инфраструктуре Kubernetes, используемой в
качестве платформы для оркестрации микросервисов программы для ЭВМ «Автоматизированная
банковская система "АРНУВО"».

Минимальная системная конфигурация:
Минимальная конфигурация предназначена для демонстрационной/тестовой установки с
ограниченным набором компонентов и минимальным набором бизнес-модулей (например, SmART
ESB + один-два функциональных микросервиса). Все инфраструктурные компоненты допускается
размещать на одной виртуальной машине.

Минимальные требования:
 CPU: 6 vCPU;
 RAM: 8 GB;
 Disk: 100 GB;

Разворачиваемые компоненты в минимальной конфигурации:
 PostgreSQL (единый инстанс);
 NATS (1 нода);
 Redis/Mongo;
 OpenSearch (1 нода, базовая конфигурация);
 SmART ESB (NodeJS);
 1–2 функциональных микросервиса (напр. Billing и Reporting) (Java/NodeJS)

Конфигурация обеспечивает техническую работоспособность системы с пустыми справочниками и
минимальной тестовой нагрузкой.

Рекомендуемая системная конфигурация:
Рекомендуемая конфигурация предназначена для типового промышленного контура,
обеспечивающего развёртывание всего набора бизнес-модулей и полного комплекта микросервисов.
Расчёт приведён для нагрузки ~ 3 000 000 клиентов/договоров/счетов и ~ 1 500 000 транзакций в
сутки.

Суммарные рекомендуемые ресурсы для кластера из 3х физических машин:
Кластер приложений (Kubernetes / VM)
СУБД PostgreSQL (primary + replica)
Инфраструктурные компоненты
Функциональные микросервисы
 CPU: ~ 96 CPU (96 Cores|192 Threads);
 RAM: ~ 768 GB;
 Диск: ~ 18 TB.

2. Основные компоненты
В таблице приведены основные компоненты (микросервисы) АБС «АРНУВО»:
Компоненты Назначение
tools:acctranscard Обработка операций по картам и иным договорам (формирование

проводок);
tools:acctransloan Обработка кредитных операций (формирование проводок);
auth Микросервис авторизации пользователей;
card Микросервис работы с договорами;
conf Микросервис для взаимодействия с хранилищем логов, для получения

информации о стеке, взаимодействия с git;
etl Микросервис преобразования данных, обработки файлов различных

форматов;
fee Микросервис тарификации (биллинга);

fs Микросервис работы с файлами (сохранение, извлечение в файловое
хранилище);

http Микросервис для работы с http сообщениями;
interest Микросервис расчета процентов и графиков платежей;
msg Микросервис рассылки сообщений;
postgres Микросервис для работы с БД Postgres;
rate_calc Микросервис конвертации;
redis Микросервис для работы с БД redis;
report Микросервис формирования отчетов;
sftp Микросервис для работы с файловой системой (извлечение, сохранение

файлов);
trans Микросервис работы с транзакциями;
v4app Микросервис сбора логов, для поиска процессов в mongo, для поиска

элементов на которых произошла предусмотренная остановка процесса
(usertask);

<конфигурационные
приложения>

Микросервисы формируемые из настроек конкретного проекта.

Экземпляр ПО «Автоматизированная банковская система "АРНУВО"» предоставляется после
приобретения ПО

3. Ход установки
3.1. Установка Kubernetes-кластера
Описан вариант установки Kubernetes-кластера на набор хостов (железных, либо виртуальных
машин) с предустановленной операционной системой Linux (например, Debian, Ubuntu, РЕД ОС,
Операционная система специального назначения «Astra Linux Special Edition», Операционная
система общего назначения "Astra Linux Common Edition" и другие), версия ядра не ниже 5.15.
Настоящая инструкция предусматривает развёртывание отказоустойчивого кластера Kubernetes в
пределах одного центра обработки данных. В целях обеспечения высокой доступности
инфраструктура должна включать не менее трёх мастер-нод и трёх рабочих (worker) нод. Указанная
конфигурация обеспечивает устойчивость к отказу любого отдельного узла и гарантирует
непрерывность функционирования системы в соответствии с требованиями надёжности.
Для установки используется стандартная утилита kubeadm (Apache License 2.0,
https://github.com/kubernetes/kubeadm/blob/main/LICENSE, https://github.com/kubernetes/kubeadm).
Процесс установки автоматизирован с помощью средства автоматизации Ansible (GPL v3.0,
https://github.com/ansible/ansible/blob/devel/COPYING, https://github.com/ansible/ansible) и состоит
в последовательном исполнении ряда скриптов.
3.1.1. Подготовка
Инструкция включает процедуры развёртывания инфраструктурных сервисов, необходимых для
работы приложений, таких как MongoDB, NATS-кластер, Elasticsearch/OpenSearch и Redis-кластер.
Указанные компоненты не являются частью АБС «АРНУВО» и используются как внешние
инфраструктурные зависимости.
Если перечисленные сервисы уже развёрнуты в целевом контуре, допускается использование
существующей инфраструктуры с изменением адресов и параметров подключения к
соответствующим эндпоинтам.
Перед установкой (применением ansible-скриптов) необходимо настроить inventory-файл, где
указывается перечень целевых хостов - адреса, способ подключения, группы (роли) - файл
hosts.ini. Все целевые хосты делятся на 2 основные группы:

 masters - хосты для организации control-plane (уровень управления); для отказоустойчивых
инсталляций обычно используется 3 хоста, реже 5; возможен 1 для тестовых контуров;

 workers - остальные, для размещения рабочей нагрузки;
Последние, в свою очередь, могут выступать в ролях (включаться в соответствующие группы в
инвентори):

 ingresses - используются для размещения подов ингресс-контроллера;
 logcollectors - используются для размещения (выделения) средств обработки/накопления

логов, метрик и прочей служебной нагрузки;
Далее, требуется настройка параметров в group_vars/all.yml

cluster_name: "patent"
kubernetes_version_minor: "1.32"
crictl_version: "1.32.0"
cni_plugins_version: "1.7.1"
kubernetes_service_subnet: "100.99.0.0/16"
kube_dns_cluster_ip: "100.99.0.10"
kubernetes_pod_subnet: "100.98.0.0/16"
kubernetes_api_ep_domains:
- "kubeapi.patent.art"

kubernetes_dns_domain: "cluster.local"
oidc_issuer_url: "https://dex.patent.art"
oidc_client_id: "dex-patent-auth"

kube_apiserver_port: 6443
loadbalancer_apiserver_port: 6443
kube_apiserver_endpoint: https://localhost:6443
nginx_image_repo: "nginx:1.19"
nginx_config_dir: "/etc/nginx"
kube_manifest_dir: /etc/kubernetes/manifests
loadbalancer_apiserver_keepalive_timeout: 5m
loadbalancer_apiserver_healthcheck_port: 8081

Особо обратить внимание на параметры:
 cluster_name
 kubernetes_api_ep_domains
 oidc_issuer_url
 oidc_client_id

Их требуется кастомизировать под конкретную инсталляцию и в соответствии со средой установки
(доменные имена).
3.1.2. Выполнение
В репозитории лежат следующие ansible-playbooks:

 1-unattended-upgrades-disable.yml
 2-limits.yml
 3-init-allhosts.yml
 4-api-proxy.yml
 5-k8s-install-part1.yml
 5.1-set-labels.yml

Каждому соответствует свой шелл-скрипт .sh, в котором можно указать для ssh-agent ssh-ключ,
применяемый для доступа к целевым хостам. Порядок исполнения соответствует нумерации в
именах файлов.
После исполнения получаем преднастроенный установленный Kubernetes-кластер с CNI Cilium,
core-dns, kubectl (на master-хостах). А также сгенерированным самоподписанным сертификатом,
который далее будет использоваться в качестве CA-cert в cert-manager для обеспчения tls-протокола
для ингресс-ендпоинтов. Этот CA-cert можно получить так:

kubectl get secret -n cert-manager local-ca-cert -o jsonpath='{.data.tls\.crt}' | base64 -d

3.2. Установка инфраструктурных компонентов кластера
3.2.1. Подготовка рабочей среды
В качестве рабочей среды может выступать компьютер с доступом к хостам кластера, либо одна из
мастер-нод самого кластера. Если это не мастер-нода, то здесь должен быть установлен kubectl и
присутствовать ~/.kube/config с действующими сертификатами для доступа к kube-api кластера.
Для установки набора инфраструктурных компонентов кластера используется GitOps-инструмент
FluxCD. Установка FluxCD CLI:

curl -s https://fluxcd.io/install.sh | sudo bash

Установка компонент FluxCD на кластер:

flux install

Также, для доступа к чувствительным параметрам установки (секретам) понадобятся утилиты: age
(https://github.com/FiloSottile/age), установка:

apt install age

https://github.com/FiloSottile/age

и SOPS (https://github.com/getsops/sops), установка:

curl -LO https://github.com/getsops/sops/releases/download/v3.9.1/sops-v3.9.1.linux.amd64
mv sops-v3.9.1.linux.amd64 /usr/local/bin/sops
chmod +x /usr/local/bin/sops

3.2.2. Настройка параметров деплоя
Для внесения изменений этот репозиторий клонируется на локальную рабочую среду,
подготовленную на предыдущем пункте.
Перед установкой нужно настроить параметры, размещённые в файлах:

 vars/vars.yaml
 vars/secrets.yaml

vars/secrets.yaml зашифрован SOPS. В данном демо-репозитории для шифрации использован ключ:

AGE-SECRET-KEY-1DTCAM5SJW0ZWLYMKD9R9ZH9JTXSTPQP4K4WC6X26SNYZJT9JRLZSVACKG4

(внимание: это демо-ключ; в реальной работе ключ должен содержаться приватно)
Для изменения vars/secrets.yaml сначала нужно его расшифровать:

sops -d -i --age 'AGE-SECRET-KEY-1DTCAM5SJW0ZWLYMKD9R9ZH9JTXSTPQP4K4WC6X26SNYZJT9JRLZSVACKG4'
vars/secrets.yaml

После изменения - зашифровать (при этом используются паблик-ключи из .sops.yaml, один из
которых соответствует демо-ключу):

sops -e -i vars/secrets.yaml

Далее, изменения нужно закоммитить и отправить в репозиторий установки. Выданный аккаунт
доступа к репозиторию (u-pat) не имеет прав на запись в данный репозиторий, поэтому, если
изменения в параметрах требуется сохранить, то сначала потребуется создать форк репозитория
установки (например, https://pat.git.art-fintech.ru/mabs-deploy/2-infra --> https://pat.git.art-fintech.ru/u-
pat/2-infra), и далее, изменения коммитить уже в форк. Также, при инициализации (см. следующий
раздел) потребутся изменить URL репозитория в команде "flux create source git" и параметр spec/url
в манифесте GitRepository flux-system в файле cluster/flux-system/git-repo.yaml
3.2.3. Установка
Создать секрет с SOPS(age)-ключом, который будет использоваться FluxCD для доступа к секретам
в репозитории установки:

kubectl create secret generic sops-age -n flux-system --from-literal=flux-infra-
patent.agekey=AGE-SECRET-KEY-1DTCAM5SJW0ZWLYMKD9R9ZH9JTXSTPQP4K4WC6X26SNYZJT9JRLZSVACKG4

Проинициализировать FluxCD из данного репозитория (либо из форка - см. предыдущий раздел),
например:

flux create source git flux-system \
--url=https://pat.git.art-fintech.ru/mabs-deploy/2-infra \
--username=u-pat \
--password=<password> \
--branch=master \
--interval=3m0s

flux create kustomization flux-system \
--source=flux-system \
--path="./cluster" \
--prune=true \
--interval=10m

в команде "flux create source git" заменить <password> на актуальный пароль пользователя u-
pat, а также параметр --url, если должен использоваться форк (если потребовались изменения в репо
установки).
Далее, автоматически начнется процесс установки. Статус выполнения можно проверить командой:

flux get all

В данной установке намеренно не используется вариант инициализации "flux bootstrap", т.к. в

https://github.com/getsops/sops
https://pat.git.art-fintech.ru/mabs-deploy/2-infra
https://pat.git.art-fintech.ru/u-pat/2-infra
https://pat.git.art-fintech.ru/u-pat/2-infra

одном из вариантов (без форка) описана возможность инсталляции из "read only" репозитория. "flux
bootstrap" же предполагает полный доступ к репо установки, т.к. добавляет туда код инициализации
самого FluxCD. Для реальных, не демо, установок рекомендуется использовать "flux bootstrap",
чтобы код FluxCD поддерживался и обновлялся им же самим.

3.3. Установка прикладного стэка
Рабочая среда установки стэка совпадает со средой установки инфраструктурных компонентов
кластера (см. соответствующий раздел "Подготовка рабочей среды"). Используются инструменты
FluxCD, SOPS (+age).
Перед установкой требуется настроить параметры деплоя (секреты), расположенные в файле
vars/secrets.yaml В частности, обратить внимание на параметры коннекта к БД. Порядок их
изменения также совпадает с описанием из раздела установки инфраструктурных компонентов
кластера ("2-infra") - клонируем (с форком, если требуется), расшифровываем, меняем, шифруем,
коммитим и отправляем в репозиторий. См. Настройка параметров деплоя.

3.3.1. Установка
Проинициализировать FluxCD из данного репозитория (либо из форка), например:

flux create source git stack \
--url=https://pat.git.art-fintech.ru/mabs-deploy/4-stack \
--username=u-pat \
--password=<password> \
--branch=master \
--interval=3m0s

flux create kustomization stack-entry \
--source=stack \
--path="./flux-entry" \
--prune=true \
--interval=10m

в команде "flux create source git" заменить на актуальный пароль пользователя u-pat, а также
параметр --url, если должен использоваться форк (если потребовались изменения в репо установки).
Далее, автоматически начнется процесс установки. Статус выполнения можно проверить командой
(рисунок 1):

flux get all

https://pat.git.art-fintech.ru/mabs-deploy/2-infra
https://pat.git.art-fintech.ru/mabs-deploy/2-infra

Рисунок 1

Чтобы убедиться в корректной работе кластера, необходимо проверить состояние всех Pod’ов. Все
компоненты должны находиться в статусе Running, а показатель READY должен иметь вид n/n.
Для просмотра состояния используйте команду (рисунок 2):

kubectl get pod -A

Рисунок 2

В ПО «Автоматизированная банковская система "АРНУВО"» реализовано большое количество
модулей, каждый из которых отвечает за определённое направление работы — от клиентских
операций и биллинга до отчётности, администрирования и интеграций.
В зависимости от выбранного модуля стартовое окно может иметь различный вид и состав
элементов интерфейса, адаптируясь под функции и задачи конкретного пользователя.
Внешний вид стартового экрана может незначительно отличаться в разных модулях, но структура
интерфейса остаётся единой и интуитивно понятной.
Пример типового стартового окна представлен на рисунке 3.

Рисунок 3 Стартовое окно ПО «Автоматизированная банковская система "АРНУВО"»

	1.Требования к системе
	2.Основные компоненты
	3.Ход установки
	3.1.Установка Kubernetes-кластера
	3.1.1.Подготовка
	3.1.2. Выполнение

	3.2.Установка инфраструктурных компонентов кластера
	3.2.1. Подготовка рабочей среды
	3.2.2. Настройка параметров деплоя
	3.2.3. Установка

	3.3.Установка прикладного стэка
	3.3.1.Установка

